
Reference Manual

Plugs Ethernet Library

101 Innovation Drive
San Jose, CA 95134
(408) 544-7000 Document Version: 1.2
http://www.altera.com Document Date: July 2003

http://www.altera.com

ii Altera Corporation

Copyright Plugs Ethernet Library Reference Manual

Copyright © 2003 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo,
specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless
noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or
service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents
and pending applications, mask work rights, and copyrights. Altera warrants performance of its semiconductor
products to current specifications in accordance with Altera’s standard warranty, but reserves the right to make
changes to any products and services at any time without notice. Altera assumes no responsibility or liability
arising out of the application or use of any information, product, or service described herein except as expressly
agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

MNL-SOPCTHRNT-1.2

Altera Corporation
About this Manual
This manual provides a software overview introducing you to the C
language library supporting SOPC Builder Ethernet components. It
includes the following items:

■ A description of the supported protocols and general structure of the
provided functions and data structures.

■ A description of the Plugs Ethernet Library, which is a collection of
software subroutines for SOPC Builder Ethernet components.

1 For the most current version of this manual, see
http://www.altera.com/literature/lit-nio.html

Table 1 shows the manual revision history.

How to Find
Information

■ The Adobe Acrobat Find feature allows you to search the contents of
a PDF file. Click the binoculars toolbar icon to open the Find dialog
box.

■ Bookmarks serve as an additional table of contents.
■ Thumbnail icons, which provide miniature previews of each page,

provide a link to the pages.
■ Numerous links, shown in green text, allow you to jump to related

information.

Table 1. Manual Revision History

Date Description

July 2003 Minor protocol clarification

May 2003 Minor revisions

January 2003 First publication
 iii

http://www.altera.com/literature/lit-nio.html
http://www.altera.com/literature/lit-nio.html

About this Manual Plugs Ethernet Library Reference Manual
How to Contact
Altera

For the most up-to-date information about Altera® products, go to the
Altera world-wide web site at http://www.altera.com.

For technical support on this product, go to
http://www.altera.com/mysupport. For additional information about
Altera products, consult the sources shown in Table 2.

Note:
(1) You can also contact your local Altera sales office or sales representative.

Documentation
Feedback

Altera values your feedback. If you would like to provide feedback on this
document—e.g., clarification requests, inaccuracies, or inconsistencies—
send e-mail to nios_docs@altera.com.

Table 2. How to Contact Altera

Information Type USA & Canada All Other Locations

Technical support http://www.altera.com/mysupport/ http://www.altera.com/mysupport/

(800) 800-EPLD (3753)
(7:00 a.m. to 5:00 p.m.
Pacific Time)

(408) 544-7000 (1)
(7:00 a.m. to 5:00 p.m.
Pacific Time)

Product literature http://www.altera.com http://www.altera.com

Altera literature services lit_req@altera.com (1) lit_req@altera.com (1)

Non-technical customer
service

(800) 767-3753 (408) 544-7000
(7:30 a.m. to 5:30 p.m.
Pacific Time)

FTP site ftp.altera.com ftp.altera.com
iv Altera Corporation

http://www.altera.com/mysupport/
http://www.altera.com/mysupport/
http://www.altera.com
http://www.altera.com
mailto:lit_req@altera.com
mailto:lit_req@altera.com
http://www.altera.com
http://www.altera.com/mysupport
http://www.altera.com/mysupport
ftp.altera.com
ftp.altera.com
mailto:nios_docs@altera.com

Plugs Ethernet Library Reference Manual About this Manual
Typographic
Conventions

This document uses the typographic conventions shown in Table 3.

Table 3. Conventions

Visual Cue Meaning

Bold Type with Initial
Capital Letters

Command names, dialog box titles, checkbox options, and dialog box options are
shown in bold, initial capital letters. Example: Save As dialog box.

bold type External timing parameters, directory names, project names, disk drive names,
filenames, filename extensions, and software utility names are shown in bold type.
Examples: fMAX, \qdesigns directory, d: drive, chiptrip.gdf file.

Italic Type with Initial
Capital Letters

Document titles are shown in italic type with initial capital letters. Example: AN 75:
High-Speed Board Design.

Italic type Internal timing parameters and variables are shown in italic type. Examples: tPIA, n + 1.
Variable names are enclosed in angle brackets (< >) and shown in italic type. Example:
<file name>, <project name>.pof file.

Initial Capital Letters Keyboard keys and menu names are shown with initial capital letters. Examples:
Delete key, the Options menu.

“Subheading Title” References to sections within a document and titles of on-line help topics are shown
in quotation marks. Example: “Typographic Conventions.”

Courier type Signal and port names are shown in lowercase Courier type. Examples: data1, tdi,
input. Active-low signals are denoted by suffix n, e.g., resetn.

Anything that must be typed exactly as it appears is shown in Courier type. For
example: c:\qdesigns\tutorial\chiptrip.gdf. Also, sections of an actual
file, such as a Report File, references to parts of files (e.g., the AHDL keyword
SUBDESIGN), as well as logic function names (e.g., TRI) are shown in Courier.

1., 2., 3., and a., b., c.,... Numbered steps are used in a list of items when the sequence of the items is
important, such as the steps listed in a procedure.

■ Bullets are used in a list of items when the sequence of the items is not important.

v The checkmark indicates a procedure that consists of one step only.

1 The hand points to information that requires special attention.

r The angled arrow indicates you should press the Enter key.

f The feet direct you to more information on a particular topic.
Altera Corporation v

About this Manual Plugs Ethernet Library Reference Manual
Acronyms ARP address resolution protocol
ICMP internet control message protocol
IETF Internet Engineering Task Force
IP internet protocol
PLD programmable logic device
RFC request for comment
SDK software development kit
TCP transmission control protocol
UDP user datagram protocol
vi Altera Corporation

Contents
About this Manual .. iii
How to Find Information .. iii
How to Contact Altera .. iv
Documentation Feedback ... iv
Typographic Conventions ..v
Acronyms .. vi

Software Overview ...9
Introduction ..9
Software Description ...9

System Requirements ..9
Protocols Supported ..10
Library Features ...10

Protocol Architecture ..10
Supported Protocols ..11

ARP (RFC 826) ..11
IP (RFC 791) ..11
ICMP (RFC 792) ..11
UDP (RFC 768) ...11
DNS (RFC 1034 & 1035) ..12
TCP (RFC 793) ..12

Build Options ..12
PLUGS_DEBUG (Default Value = 1) ..12
PLUGS_PLUG_COUNT (Default Value = 6) ...12
PLUGS_ADAPTER_COUNT (Default Value = 2) ..13
PLUGS_DNS (Default Value = 1) ..13
PLUGS_PING (Default Value = 1) ..13
PLUGS_TCP (Default Value = 1) ...13

Byte Order ...13
Data Structures ...15
Payload Descriptions ...17

Subroutines ..19
nr_plugs_initialize ...20
nr_plugs_terminate ..21
nr_plugs_set_mac_led ...22
nr_plugs_create ..23
typedef int (*nr_plugs_receive_callback_proc) ...25
Altera Corporation vii

Contents
nr_plugs_destroy ...27
nr_plugs_connect ...28
nr_plugs_send ..29
nr_plugs_send_to ...30
int nr_plugs_listen ...31
typedef int (*nr_plugs_listen_callback_proc) ..32
nr_plugs_ip_to_ethernet ...33
nr_plugs_name_to_ip ..34
nr_plugs_idle ..35
void nr_plugs_print_ethernet_packet ...36
nr_n2h16 ..37
nr_h2n16 ..37
nr_n2h32 ..37
nr_h2n32 ..37

Index ...39
viii Altera Corporation

Altera Corporation

1

Software Overview

O

verview
Introduction The Plugs Ethernet Library is a library of software routines for managing
network connections with the Nios processor. The plugs subroutines are
similar to standard UNIX “socket” routines that implement protocols for
opening network connections, and transmitting and receiving data
packets. Using the Plugs Ethernet Library, a software developer can easily
create network-enabled Nios processor systems. The Plugs Ethernet
Library abstracts the physical network connection from the software
developer, making plugs-based embedded software easily portable to
other Nios processor systems.

When the SOPC Builder development tool generates a system that
includes an Ethernet peripheral, SOPC Builder includes the plugs routines
in the software development kit (SDK) for the system. SOPC Builder
customizes the Plugs Ethernet Library with low-level drivers to match the
network hardware used in the custom system. With appropriate
knowledge of the underlying hardware, you can port the Plugs Ethernet
Library to support any Ethernet MAC hardware, including on-chip MAC
implementations.

Software
Description

The Plugs Ethernet Library allows your software to use network protocols
for transmitting and receiving data. The information in this chapter is
applicable to PHY/MAC devices.

System Requirements

The Plugs Ethernet Library has the following system requirements.

■ Nios CPU
■ 20-Kbyte code footprint
■ 8-Kbyte data footprint
■ Nios Timer peripheral named timer 1

1 The Plugs Ethernet Library requires your system to have a Timer
peripheral named timer 1.
 9

Software Overview Plugs Ethernet Library Reference Manual
Protocols Supported

The Plugs Ethernet Library supports the following protocols.

■ Raw Ethernet
■ Address resolution protocol (ARP)
■ Internet protocol (IP)
■ Internet control message protocol (ICMP)
■ User datagram protocol (UDP)
■ Transmission control protocol (TCP)

Library Features

The Plugs Ethernet Library has the following features.

■ Accesses low-level packets
■ Accesses high-level packet payloads
■ Conforms to the Internet Engineering Task Force (IETF) RFCs
■ Allows you to open connections and send data with only a few lines

of code
■ Is similar to the UNIX standard socket subroutines
■ Can set each plug to print debug information for either transmit or

receive data

The customized SDK for Ethernet-adapter peripherals contains the Plugs
Ethernet Library and example applications. This library can be used in
either interrupt-driven or polled applications.

Protocol
Architecture

Figure 1 shows the relationship between the Plugs Ethernet Library-
supported Ethernet protocols.

Figure 1. Nios Ethernet Protocol Structure

Plugs Library

Raw Ethernet

hello_plugs.c

HTTP

ARP

ARP
Scanner Ping Telnet

ICMP TCP

webserver.c

IP

DNS

UDP
10 Altera Corporation

Plugs Ethernet Library Reference Manual Software Overview

O
verview

1
Supported
Protocols

The Plugs Ethernet Library supports protocols based upon standards
recommended by the RFCs at http://www.ietf.org. The Plugs Ethernet
Library is robust and versatile, although rigorous adherence to the
recommended RFC standards is not guaranteed.

The Plugs Ethernet Library supports Ethernet and 802.3 packets. To send
an 802.3 packet, the application has to construct all fields explicitly.
Higher-level protocols do not support 802.3 and use Ethernet instead. The
Plugs Ethernet Library does not support trailer encapsulation as
documented in RFC 893.

The library subroutines send and receive Ethernet packets to and from
arbitrary 48-bit MAC addresses. Higher-level protocols such as ICMP,
UDP, and TCP use Ethernet transparently.

ARP (RFC 826)

The Plugs Ethernet Library provides subroutines to query the LAN for the
Ethernet address of a particular remote IP address and to respond to
queries for the local IP address. Other protocols like IP use ARP
transparently.

IP (RFC 791)

The Nios processor encapsulates IP on Ethernet (RFC 894). Nios Ethernet
provides library subroutines for sending and receiving IP packets to and
from a user-defined 32-bit remote IP address. Higher-level protocols like
ICMP, UDP, and TCP use IP transparently.

■ Nios Ethernet does not support IP packet fragmentation.
■ Nios Ethernet supports IPv4.

ICMP (RFC 792)

The Plugs Ethernet Library can respond to an ICMP echo request (ping).
The library includes subroutines to send and receive ICMP error
messages.

UDP (RFC 768)

UDP is a low-level packet format built on top of IP. The Nios processor
provides library subroutines to send and receive UDP packets to and from
an arbitrary 32-bit remote IP address and 16-bit port number. Higher-level
protocols like DNS use UDP transparently.
Altera Corporation 11

http://www.ietf.org

Software Overview Plugs Ethernet Library Reference Manual
DNS (RFC 1034 & 1035)

The Nios processor provides library subroutines to transmit a DNS query
for a host name to a specified name server. If the query finds the host
name, the name server returns the associated IP address requested. The
Nios processor supports UDP encapsulation of DNS and does not support
TCP encapsulation of DNS.

TCP (RFC 793)

TCP is a connection-oriented protocol built on top of IP. The library
provides subroutines to open a TCP connection to an arbitrary 32-bit IP
address and 16-bit port. This protocol receives requests for incoming
connections, accepts or denies requests for incoming connections,
transmits and receives bytes on an established connection, and closes an
established connection.

1 The TCP implementation in the Plugs Ethernet Library is not
guaranteed to be robust in all circumstances, unless your
application implements retry– and window–management.

Build Options The Plugs Ethernet Library provides the following build options for
modulating its features and footprint.

PLUGS_DEBUG (Default Value = 1)

You must set this build option to 0 to disable all debug printing features,
or set it to 1 or 2 to enable debug-printing for plugs that are created with
the ne_plugs_flag_debug_rx or ne_plugs_flag_debug_tx flags
set. When set to 0, no printing code is linked to the plug.

PLUGS_PLUG_COUNT (Default Value = 6)

This build option sets the maximum number of plugs that you can create.
The library can handle a maximum of 32 plugs. The library itself uses two
or three ports per adapter for managing ARP, pings, and DNS. Changing
this option affects the amount of static storage used by the library.

1 When using a stacked reference design (two adapters), it is
necessary to increase the default value number. The
recommended value is 10.
12 Altera Corporation

Plugs Ethernet Library Reference Manual Software Overview

O
verview

1
PLUGS_ADAPTER_COUNT (Default Value = 2)

The Plugs Ethernet Library can support multiple network adapters. This
build option sets the maximum number of adapters that you can use. It
affects the amount of static storage used by the library.

PLUGS_DNS (Default Value = 1)

The Plugs Ethernet Library lets you establish connections to a remote
network device using either its name or its IP address. If you use its name,
the Plugs Ethernet Library contacts a domain name server to translate it
into an IP address. If your application does not need to establish outgoing
connections (e.g., the application is a server only) or only uses IP
addresses, then you can set this build option to 0 to omit the code that
implements name lookups.

PLUGS_PING (Default Value = 1)

Every network device should respond to an ICMP echo request message
(ping). You can disable a ping response to save a small amount of code
space by setting this build option to 0.

PLUGS_TCP (Default Value = 1)

If your application does not use TCP for any of its plugs, you can disable
it and save a small amount of code space by setting this build option to
zero.

Byte Order Network byte order is big endian. The Nios CPU byte order is little
endian. Therefore, packet header numbers reside in memory in reverse
order. This order is often desirable for comparing the packet header
numbers to other packet header numbers being sent over the network.
The normal ordering for a particular CPU is called host ordering.

1 It is important to know whether a particular integer in memory
or a register is in host order or network order when using the
Plugs Ethernet Library.

Some parameters to subroutines in the Plugs Ethernet Library are given in
network order, and others are given in host order. To distinguish between
network order and host order, the following data types are declared:

typedef unsigned char host_8
typedef unsigned short host_16
typedef unsigned long host_32
Altera Corporation 13

Software Overview Plugs Ethernet Library Reference Manual
typedef unsigned char net_8
typedef unsigned short net_16
typedef unsigned long net_32
14 Altera Corporation

Plugs Ethernet Library Reference Manual Software Overview

O
verview

1
Data Structures The following sections describe the library data structures.

ns_plugs_network_setting (Part 1 of 2)

Structure: typedef struct

{

net_48 ethernet_address;

short flags;

net_32 ip_address;

net_32 nameserver_ip_address;

net_32 subnet_mask;

net_32 gateway_ip_address;

} ns_plugs_network_settings;

Description: This structure is used to configure an adapter with all the necessary network information.
It is passed to the Plugs Ethernet Library subroutine nr_plugs_initialize()for
each adapter.

Structure member: ethernet_address This member is a 48-bit value in network-byte order. Every
Ethernet card must have a unique 48-bit MAC address.
(These addresses are managed by the IEEE. Information
on obtaining a legal Ethernet MAC address can be found
at www.ieee.org; search for OUI, Organizationally Unique
Identifier)

flags This field can be zero or can contain the single flag
ne_plugs_flag_dhcp, which causes the Plugs
Ethernet Library to attempt to use a DHCP server to
provide its network settings. If DHCP is used, only the
Ethernet address must be included during initialization.

ip_address This member is a 32-bit IP address in network-byte order.
It should be an unused IP address within the range of the
LAN connection to the Nios-based device.

nameserver_ip_address This member is a 32-bit IP address in network-byte order.
If the Nios-based device needs to establish connections
with remote network devices using their DNS names
(using the remote_name parameter of the Plugs
Ethernet Library nr_plugs_connect() or
nr_plugs_name_to_ip() subroutines), then provide
the name server’s IP address for the Plugs Ethernet
Library to use.
Altera Corporation 15

Software Overview Plugs Ethernet Library Reference Manual
subnet_mask This member is a 32-bit value in network-byte order. This
mask value determines if a particular remote network
device is on the same LAN as the Nios-based device. If
any of the Nios-based device’s IP address bits differ from
any of the remote network device’s IP address bits, and
the corresponding subnet mask bit is set, then the remote
device is not on the LAN. The Plugs Ethernet Library
sends packets for remote devices that are not on the LAN
to the local gateway.

gateway_ip_address This member is a 32-bit value in network-byte order. If the
Nios-based device communicates with devices that are
not on the LAN, it must send packets to the gateway. The
gateway is then responsible for routing packets
appropriately.

ethernet_address This member is a 48-bit value in network-byte order. Every
Ethernet card must have a unique 48-bit MAC address.
(These addresses are managed by the IEEE. Information
on obtaining a legal Ethernet MAC address can be found
at www.ieee.org; search for OUI, Organizationally Unique
Identifier)

ns_plugs_network_setting (Part 2 of 2)
16 Altera Corporation

Plugs Ethernet Library Reference Manual Software Overview

O
verview

1

Payload
Descriptions

Each protocol treats a different part of the raw Ethernet packet as the
payload. The payload is the part of the packet passed to the receive
callback procedure. The callback procedure can access the payload and all
encapsulating header information. Table 4 below describes which part of
the packet is treated as the payload for each of the supported protocols.

ns_plugs_persistent_network_settings

Structure: typedef struct

{

 long settings_index; // 0..3

 ns_plugs_network_settings settings[4];

} ns_plugs_persistent_network_settings;

Description: The example programs that use the Plugs Ethernet Library make use of nonvolatile
network settings stored in the flash memory. The program hello_plugs.c lets you
enter up to four sets of network settings, and use these setting interchangeably. The
default location in the flash memory on the Nios development board is 0x00106000. You
can direct the Plugs Ethernet Library subroutine nr_plugs_initialize() to use the
nonvolatile network settings selected by the settings_index member by passing zero
for the settings parameter.

Structure member: setting_index This member is an integer that ranges from 0 to 3. This index
determines which of the four stored network settings to use.

setting This member is an array of four elements of type
ns_plugs_network_settings. You can store up to four
complete network settings in the flash memory; the
settings_index member determines which one is used.

Table 4. Plugs Ethernet Library Protocol Payload Descriptions

Protocol Payload Description Payload Protocol Type Maximum Payload
Size (bytes)

Ethernet Header portion of Ethernet packet followed
by any other contents

ns_ethernet_packet * 1,500

ARP Header portion of ARP packet, which is the
payload portion of the Ethernet packet

ns_arp_packet * 28

IP Payload portion of the IP packet unsigned char * 1,024

ICMP Header portion of the ICMP packet ns_icmp_packet * 1,024

UDP Payload portion of the UDP packet unsigned char * 1,024

TCP Sequential bytes from the stream unsigned char * 512
Altera Corporation 17

Software Overview Plugs Ethernet Library Reference Manual
18 Altera Corporation

Altera Corporation
Subroutines

Subroutines

2

Table 5 lists and describes the Nios Plugs Ethernet Library subroutines.
These subroutines are described in the following sections.

Table 5. Nios Plugs Ethernet Library Subroutines

Subroutine Description

nr_plugs_initialize Initializes the Plugs Ethernet Library.

nr_plugs_terminate Terminates the Plugs Ethernet Library.

nr_plugs_set_mac_led Controls the LED on the RJ-45 jack.

nr_plugs_create Allocates a plug.

typedef int (*nr_plugs_receive_callback_proc) Application-provided callback subroutine to receive data.

nr_plugs_destroy Deallocates a plug.

nr_plugs_connect Associates a plug with a remote IP address and port on the
network.

nr_plugs_send Sends a packet to the connected remote network device.

nr_plugs_send_to Sends a packet to a specified IP address and port.

nr_plugs_listen Tells a plug to wait for an incoming TCP connection request.

typedef int (*nr_plugs_listen_callback_proc) Application-provided callback subroutine to accept or reject a
TCP connection request.

nr_plugs_ip_to_ethernet Converts an IP address to an Ethernet address.

nr_plugs_name_to_ip Uses name server to convert a remote network device name to
an IP address.

nr_plugs_idle Polls all network adapters for incoming packets and dispatches
the packets to the receive callback subroutines.

nr_plugs_print_ethernet_packet Prints an Ethernet packet report.

nr_n2h16 Translates a network-short integer to a short integer.

nr_h2n16 Translates a short integer to a network-short integer.

nr_n2h32 Translates a network-long integer to a long integer.

nr_h2n32 Translates a long integer to a network-long integer.
 19

Subroutines Plugs Ethernet Library Reference Manual
nr_plugs_initialize

Syntax: int nr_plugs_initialize
 (
 long flags,
 ns_plugs_network_settings *network_settings,

 void *adapter_base_address,
 int adapter_irq,
 ns_plugs_adapter_description *adapter_description
);

Description: This subroutine can either initialize the Plugs Ethernet Library or add an additional
adapter to the Plugs Ethernet Library. Each adapter is completely distinct from each
other. If you are using more than one adapter, each adapter should be added using
this subroutine before calling any other subroutine. Each adapter has its own network
settings (IP address, netmask, etc.). Only the first adapter added can perform DNS
lookups.

Parameters:

flags This parameter can be 0 or any combination of ne_plugs_flag_add_adapter and
ne_plugs_flag_dhcp. If you set this parameter to
ne_plugs_flag_add_adapter, then the device only initializes this adapter and
adds it to the Plugs Ethernet Library list of available adapters. The first adapter has
an index number of zero, the second adapter has an index number of one, and so
forth. Some other subroutines use this index number to specify a particular adapter.
You can force nr_plugs_initialize to use DHCP to discover all of its network
settings dynamically (except the Ethernet address) by setting the flag
ne_plugs_flag_dhcp.

network_setting This parameter is a pointer to a structure of type ns_plugs_network_settings to
configure this adapter. If you set the network_setting to null, the device
retrieves the network settings from the flash memory.

adapter_base_address The hardware address of the adapter peripheral device, if applicable.

adapter_irq The interrupt number of the ethernet hardware device. If this parameter is set to zero,
interrupts are not enabled and the adapter is not instructed to enter interrupt mode.

adapter_description A pointer to a structure of type ns_plugs_adapter_description, that
determines the low-level driver subroutines for this adapter.

Return Value: If this subroutine is successful, the return value is 0. If this subroutine fails, the return
value is negative.

Include: plugs.h
20 Altera Corporation

Plugs Ethernet Library Reference Manual Subroutines

Subroutines

2

nr_plugs_terminate

Syntax: nr_plug_terminate(void)
 (
 void
);

Description: Call this subroutine when you are done using the Plugs Ethernet Library. If you need to
reinitialize the Plugs Ethernet Library with different network settings, call this subroutine
first before reinitializing.

Parameters: None

Return Value: If this subroutine is successful, the return value is 0. If this subroutine fails, the return
value is negative.

Include: plugs.h
Altera Corporation 21

Subroutines Plugs Ethernet Library Reference Manual
nr_plugs_set_mac_led

Syntax: int nr_plug_set_mac_led
 (
 int adapter_index,
 int led_onoff
);

Description: This subroutine controls the LED present on most Ethernet jacks. If a particular adapter
does not have a LED on the Ethernet jack, this subroutine does nothing. By default, the
LED is on if it is connected to a network and off if it is not connected to a network.

Parameters:

adapter_index The index number of the adapter to control.

on_off This parameter can have one of three values. 0 turns the LED off, 1 turns the LED on and
−1 returns the LED to its default behavior as specified for the particular adapter.

Return Value: If this subroutine is successful, the return value is 0. If this subroutine fails, the return
value is negative.

Include: plugs.h
22 Altera Corporation

Plugs Ethernet Library Reference Manual Subroutines

Subroutines

2

nr_plugs_create

Syntax: int nr_plugs_create
 (
 int *plugs_handle_out,
 int protocol,
 host_16 port,
 nr_plugs_receive_callback_proc callback,
 void *callback_context,
 long flags
);

Description: This subroutine creates a plug (a logical endpoint for network communications). A plug
is in some ways similar to a traditional UNIX socket. When you create a plug, you must
specify its protocol, and, if applicable to the particular protocol, its port number. You must
also specify a callback procedure. The callback procedure is called whenever data
arrives over the network for this plug. A plug is associated with exactly one adapter.

Parameters:

plugs_handle_out This parameter is a pointer to an integer that contains a reference to the new plug. The
new plug reference specifies this particular plug to other Plugs Ethernet Library
subroutines.

protocol This parameter specifies which network protocol the plug can receive and transmit. The
possible values for this parameter are:
ne_plugs_ethernet
ne_plugs_arp

ne_plugs_ip
ne_plugs_icmp
ne_plugs_udp
ne_plugs_tcp

port If the plug’s protocol is UDP or TCP, then the plug must be associated with a particular
port number. If this parameter is 0, the software will select an unused port number.

callback When data arrives for this plug, your callback routine is called with the data. The
parameters of the callback subroutine are documented under
nr_plugs_receive_callback_proc.

callback _context The device passes this parameter unmodified to your callback subroutine. It can carry
state information to your callback subroutine.
Altera Corporation 23

Subroutines Plugs Ethernet Library Reference Manual
flags Multiple flags should be grouped together using the OR instruction with the vertical-bar
operator. If you are using more than one adapter, you can add an integer between 0 and
15 to the value for the flags parameter. This indicates the index number of the adapter
associated with the plug. If you are using only one adapter, then its index is always 0.
Flags can be any combination of the following:

ne_plugs_flag_ethernet_broadcast: If the plug is an Ethernet protocol, this flag
transmits outgoing packets as broadcast messages.

ne_plugs_flag_ethernet_all: If the plug is an Ethernet protocol, this plug receives
all packets, regardless of whether their Ethernet address matches this adapter’s
address.

ne_plugs_flag_debug_rx: This flag prints debugging information for each packet
received by this plug. The debugging information is printed using printf(), and
appears on the same serial port as other printf() outputs.

ne_plugs_flag_debug_tx: This flag prints debugging information for each packet
transmitted by this plug. The debugging information is printed using printf(), and
appears on the same serial port as other printf() outputs.

Return Value: If this subroutine is successful, the return value is 0. If this subroutine fails, the return
value is negative.

Include: plugs.h
24 Altera Corporation

Plugs Ethernet Library Reference Manual Subroutines

Subroutines

2

typedef int (*nr_plugs_receive_callback_proc)

Syntax: typedef int (*nr_plug_receive_callback_proc)
 (
 int plug_handle
 void *context,
 ns_plugs_packet *p,
 void *payload,
 int payload_length
);

Description: This is a subroutine you provide when you create a plug. The Plugs Ethernet Library calls
this subroutine whenever a packet arrives for the plug. The plug receives the packet’s
payload and length and also a pointer to a list containing the packet header for each
network protocol layer used by the incoming packet.

Parameters:

plug_handle This is a reference to the plug that is receiving a packet.

context The value passed for the parameter named callback_context in
nr_plugs_create().
Altera Corporation 25

Subroutines Plugs Ethernet Library Reference Manual
p This parameter is a pointer to an array of entries. These entries can be indexed by the
various network protocol enumeration constants (the same constants used to specify the
network protocol in nr_plugs_create()). Each entry consists of two fields, as follows:

typedef struct

{
void *header;

 int length;
 } ns_plugs_packet;

The header field is a pointer to the first byte of the header for that protocol layer. If the
header pointer is 0, then the packet does not conform to the indexed protocol. The length
is the combined length of the header and payload for that protocol layer.

For example, if you create a plug using the TCP protocol, when your callback subroutine
is called, you could examine the enclosing Ethernet packet header by reading at location
p[ne_plugs_ethernet].header. You could also examine the enclosing IP packet
header by reading at location p[ne_plugs_ip].header. However, the values for
p[ne_plugs_arp].header, p[ne_plugs_icmp].header and
p[ne_plugs_udp].header are all 0 because these protocols are not a part of a TCP
packet.

The header field is a pointer to the first byte of the header for that protocol layer. If the
header pointer is 0, then the packet does not conform to the indexed protocol. The length
is the combined length of the header and payload for that protocol layer.

For example, if you create a plug using the TCP protocol, when your callback subroutine
is called, you could examine the enclosing Ethernet packet header by reading at
p[ne_plugs_ethernet].header. You could also examine the enclosing IP packet
header by reading at p[ne_plugs_ip].header. However, the values for
p[ne_plugs_arp].header, p[ne_plugs_icmp].header, and
p[ne_plugs_udp].header are all 0 because these protocols are not a part of a TCP
packet.

payload This is a pointer to the meaningful payload portion of the packet to be received by this
plug. In the case of TCP and UDP, the payload contains the bytes transmitted.

payload_length The length of the payload. In the case of TCP and UDP protocol, this is the number of
bytes transmitted.

Return Value: If this subroutine is successful, the return value is 0. If this subroutine fails, the return value
is negative.

Include: plugs.h
26 Altera Corporation

Plugs Ethernet Library Reference Manual Subroutines

Subroutines

2

nr_plugs_destroy

Syntax: int nr_plugs_destroy
 (
 int plug_handle,
);

Description: De-allocates a plug. When you no longer need a plug, call this subroutine to de-allocate
any resources associated with the discarded plug.

Parameters:

plug_handle This parameter is a reference to the plug you are eliminating.

Return Value: If this subroutine is successful, the return value is 0. If this subroutine fails, the return
value is negative.

Include: plugs.h
Altera Corporation 27

Subroutines Plugs Ethernet Library Reference Manual
nr_plugs_connect

1 The nr_plugs_connect subroutine does not support
transmission to another plug on the same Nios system or
loopback.

Syntax: int nr_plug_connect
 (
 int plug_handle,
 char *remote_name,
 host_32 remote_ip_address,
 host_16 remote_port
);

Description: This subroutine associates a plug with a particular remote IP address and port on the
network. If the plug uses TCP, then this subroutine will perform the necessary network
transaction to establish a connection with the remote host. If the connection cannot be
established, an error is returned. If the plug is not using TCP, then the remote address and
port are stored in the plug’s state as the default destination for packets.

You can use this subroutine to allow any remote-network device to receive packets (only if
the plug does not use TCP), by connecting to IP address –1, port –1. This subroutine can
be useful when providing a UDP service.

If the plug uses TCP, this subroutine closes an existing TCP connection. To close a
connection on a TCP plug, call this subroutine with a remote IP address of 0 and a remote
port of 0.

Parameters:

plug_handle A reference to the plug you are connecting

remote_name A pointer to a string containing the name of a remote-network device (for example,
http://www.altera.com). The subroutine attempts to resolve the name to an IP address
using the DNS server associated with the first adapter installed. If this parameter is 0, the
remote_ip_address parameter is used instead.

remote_ip_address A 32-bit value that is an IP address of a remote-network device. This parameter is ignored
if a remote name is provided for the remote_name parameter.

remote_port If the port uses UDP or TCP, this parameter specifies the port number of the connection
on the remote-network device.

Return Value: If this subroutine is successful, the return value is 0. If this subroutine fails, the return value
is negative.

Include: plugs.h
28 Altera Corporation

Plugs Ethernet Library Reference Manual Subroutines

Subroutines

2

nr_plugs_send

Syntax: int nr_plugs_send
 (
 int plug_handle,
 void *data,

 int data_length,
 long flags
);

Description: This subroutine transmits a packet of data using a particular plug. Before you call this
subroutine, you must call nr_plugs_connect() to associate the plug with a
particular remote-network device.

Parameters:

plug_handle A reference to a plug.

data The payload to send.

data_length The number of bytes in the payload.

flags This parameter augments the flags specified by nr_plugs_create(). This parame-
ter adds ne_flag_debug_tx to one particular transmission.

Return Value: If this subroutine is successful, the return value is 0. If this subroutine fails, the return
value is negative.

Include: plugs.h
Altera Corporation 29

Subroutines Plugs Ethernet Library Reference Manual
nr_plugs_send_to

Syntax: int nr_plugs_send_to
 (
 int plug_handle,
 void *data,

 int data_length,
 long flags,
 net_32 ip_address, //|net order
 net_16 port //|net order
);

Description: This subroutine is identical to nr_plugs_send(), with the addition of a destination IP
address and port. When a plug uses UDP, you can easily send a packet to any destination
using this subroutine. Do not use this subroutine on a plug using TCP.

Parameters:

plug_handle A reference to a plug.

data The payload to send.

data_length The number of bytes in the payload.

flags This parameter augments the flags specified by nr_plugs_create(). Typically this
subroutine is used to add ne_plugs_flag_debug_tx to a particular transmission.

ip_ address The IP address of a remote-network device. The packet is transmitted to this remote-
network device. This 32-bit parameter is in network byte order. To convert a 32-bit integer
to network byte order, use the macro nm_h2n32(x).

port If the plug uses UDP, the packet transmits to this port on the remote-network device. This
16-bit parameter is in network byte order. To convert a 16-bit integer to network byte order,
use the macro nm_h2n16(x).

Return Value: If this subroutine is successful, the return value is 0. If this subroutine fails, the return value
is negative.

Include: plugs.h
30 Altera Corporation

Plugs Ethernet Library Reference Manual Subroutines

Subroutines

2

int nr_plugs_listen

Syntax: int nr_plugs_listen

 (

 int plug_handle,
 nr_plugs_listen_callback_proc callback,
 void *callback_context
);

Description: You should only call this subroutine if the plug uses TCP. This subroutine tells the plug to
wait for an incoming TCP connection request. If the plug is already connected to a remote-
network device, the connection is closed immediately when this subroutine is called.
When a connection request is received, the callback subroutine you provide is called and
can accept or reject the connection request.

If there is an existing TCP connection established on this plug, the connection is closed
and the plug begins to wait for an incoming TCP connection request.

You may create multiple TCP plugs for the same port. When a connection request is
received, each of the plugs’ callback subroutines will be called and the first plug to accept
the connection will be connected.

Parameters:

plugs_handle A reference to the plug.

callback A subroutine you provide to accept or decline an incoming TCP connection request. You
may pass 0 for this parameter and any incoming TCP connection request will be accepted.

callback_context This parameter is passed unmodified to your callback subroutine. It can carry state
information to your subroutine.

Return Value: If this subroutine is successful, the return value is 0. If this subroutine fails, the return value
is negative.

Include: plugs.h
Altera Corporation 31

Subroutines Plugs Ethernet Library Reference Manual
typedef int (*nr_plugs_listen_callback_proc)

Syntax: typedef int (*nr_plugs_listen_callback_proc)
 (
 int plug_handle,
 void *context,
 host_32 remote_ip_address,
 host_16 remote_port
);

Description: This is a subroutine you provide when you allow a TCP plug to accept connections using
the nr_plugs_listen()subroutine. This subroutine can accept or decline the
connection by returning a 0 (meaning no error occurred — accept the connection) or a
negative value (meaning an error did occur — do not accept the connection).

Parameters:

plug_handle A reference to a plug.

context The value passed for the parameter named callback_context in
nr_plugs_listen().

remote_ip_address The IP address of the remote-network device attempting to connect to this plug.

remote_port The port on the remote-network device attempting to connect to this plug.

Return Value: Your subroutine should return 0 to accept the incoming connection request, or a
negative value to reject the connection request.

Include: plugs.h
32 Altera Corporation

Plugs Ethernet Library Reference Manual Subroutines

Subroutines

2

nr_plugs_ip_to_ethernet

Syntax: int nr_plugs_ip_to_ethernet
 (
 int adapter_index,
 net_32 ip_address,

 net_48 *ethernet_address_out,
 long flags
);

Description: When this subroutine is given an IP address, it determines which is the correct Ethernet
address for the packets being sent. When the IP address is on the LAN, the Ethernet
address is the address for the network device; otherwise, the Ethernet address is the
address for the local gateway.

Parameters:

adapter_index This is the index number for the adapter being used.

ip_address This is an IP address of a remote-network device.

ethernet_address_out A pointer to a 48-bit Ethernet address. This subroutine will fill out this structure with the
discovered Ethernet address.

flags This flag can be 0 or ne_plugs_flag_debug_tx. If the flag is
ne_plugs_flag_debug_tx and the operation fails, then a message is printed.

Return Value: If this subroutine is successful, the return value is 0. If this subroutine fails, the return
value is negative.

Include: plugs.h
Altera Corporation 33

Subroutines Plugs Ethernet Library Reference Manual
nr_plugs_name_to_ip

Syntax: int nr_plugs_name_to_ip
 (
 char *host_name,
 net_32 *host_ip_address_out
);

Description: When this subroutine is given the name of a remote-network device, it queries the
name server to find out the IP address. This subroutine uses adapter number 0.

Parameters:

host_name This is a pointer to a string containing the name of a network device.

host_ip_address_out This is a pointer to a 32-bit IP address. This subroutine will fill out this value with the
discovered IP address.

Return Value: If this subroutine is successful, the return value is 0. If this subroutine fails, the return
value is negative.

Include: plugs.h
34 Altera Corporation

Plugs Ethernet Library Reference Manual Subroutines

Subroutines

2

nr_plugs_idle

Syntax: int nr_plugs_idle(void)
 (
 void
);

Description: If the device does not enable interrupts, then this subroutine must be called frequently in
your program’s inner loop, or from a timer interrupt subroutine. It polls the hardware device
for incoming packets, and dispatches them via each plug’s callback subroutine.

Parameters: None

Return Value: If any errors occur, the return value will be negative.

Include: plugs.h
Altera Corporation 35

Subroutines Plugs Ethernet Library Reference Manual
void nr_plugs_print_ethernet_packet

Syntax: void nr_plugs_print_ethernet_packet(void)

 (

 ns_plugs_ethernet_packet *p,
 int length,
 char *title
);

Description: This subroutine prints an Ethernet packet in a friendly, human-readable format.

Parameters:

p A pointer to an Ethernet packet.

length The length of the Ethernet packet.

title A short string printed at the beginning of each line.

Return Value: If this subroutine is successful, the return value is 0. If this subroutine fails, the return value
is negative.

Include: plugs.h
36 Altera Corporation

Plugs Ethernet Library Reference Manual Subroutines

Subroutines

2

The following subroutines and macros are for your general use and are
required when translating between host-byte ordering and network-byte
ordering for plugs Ethernet library-network programming.

1 Network-byte ordering is always big-endian and Nios host-byte
ordering is little-endian.

nr_n2h16

nr_h2n16

nr_n2h32

nr_h2n32

Syntax: nr_n2h16(net_16 value)

Parameters: A network-short integer

Description: Translates a network-short integer to a short integer.

Equivalent Macro: nm_n2h16(host_16)

Syntax: nr_h2n16(host_16 value)

Parameters: A short integer

Description: Translates a short integer to a network-short integer.

Equivalent Macro: nm_h2n16(host_16)

Syntax: nr_n2h32(net_32 value)

Parameters: A network-long integer

Description: Translates a network-long integer to a long integer.

Equivalent Macro: nm_n2h32(host_32)

Syntax: nr_h2n32(host_32 value)

Parameters: A long integer

Description: Translates a long integer to a network-long integer.

Equivalent Macro: nm_h2n32(host_32)
Altera Corporation 37

Altera Corporation
Index

Index

4

A

ARP 17
Plugs Ethernet Library support 11

B

build options
Plugs Ethernet Library 12

byte order
Plugs Ethernet Library 13

D

data structures
Plugs Ethernet Library 15

DNS
Plugs Ethernet Library 12

documentation feedback iv

E

Ethernet 17

F

features
Plugs Ethernet Library 10

feedback, documentation iv

I

ICMP 17
Plugs Ethernet Library 11

int nr_plugs_listen 31
IP 17

Plugs Ethernet Library support 11

N

ne_plugs_flag_debug_rx 12
ne_plugs_flag_debug_tx 12
nr_h2n16 19, 37
nr_h2n32 19, 37
nr_n2h16 19, 37
nr_n2h32 19, 37
nr_plugs_connect 19, 28
nr_plugs_create 19, 23
nr_plugs_destroy 19, 27
nr_plugs_idle 19, 35
nr_plugs_initialize 19, 20
nr_plugs_ip_to_ethernet 19, 33
nr_plugs_listen 19
nr_plugs_listen_callback_proc 19, 32
nr_plugs_name_to_ip 19, 34
nr_plugs_print_ethernet_packet 19, 36
nr_plugs_receive_callback_proc 19, 25
nr_plugs_send 19, 29
nr_plugs_send_to 19, 30
nr_plugs_set_mac_led 19, 22
nr_plugs_terminate 19, 21

O

overview
plugs 9

P

plugs
overview 9
SOPC Builder 9

Plugs Ethernet Library 9
ARP (RFC 826) 11
build options 12
byte order 13
data structures 15
 39

Index Plugs Ethernet Library Reference Manual
DNS (RFC 1034 & 1035) 12
features 10
host ordering 13
ICMP (RFC 792) 11
IP (RFC 791) 11
payload descriptions 17
protocol architecture 10
protocols 11
protocols supported 10
system requirements 9
TCP (RFC 793) 12
UDP (RFC 768) 11

PLUGS_ADAPTER_COUNT 13
PLUGS_DEBUG 12
PLUGS_DNS 13
PLUGS_PING 13
PLUGS_PLUG_COUNT 12
PLUGS_TCP 13
protocol

Plugs Ethernet Library architecture 10
protocols

Plugs Ethernet Library 10, 11

S

SOPC Builder
plugs 9
Plugs Ethernet Library 9

system requirements
Plugs Ethernet Library 9

T

TCP 17
Plugs Ethernet Library 12

U

UDP 17
Plugs Ethernet Library 11
40 Altera Corporation

	About this Manual
	How to Find Information
	How to Contact Altera
	Documentation Feedback
	Typographic Conventions
	Acronyms

	Software Overview
	Introduction
	Software Description
	System Requirements
	Protocols Supported
	Library Features

	Protocol Architecture
	Supported Protocols
	ARP (RFC 826)
	IP (RFC 791)
	ICMP (RFC 792)
	UDP (RFC 768)
	DNS (RFC 1034 & 1035)
	TCP (RFC 793)

	Build Options
	PLUGS_DEBUG (Default Value = 1)
	PLUGS_PLUG_COUNT (Default Value = 6)
	PLUGS_ADAPTER_COUNT (Default Value = 2)
	PLUGS_DNS (Default Value = 1)
	PLUGS_PING (Default Value = 1)
	PLUGS_TCP (Default Value = 1)

	Byte Order
	Data Structures
	Payload Descriptions

	Subroutines
	nr_plugs_initialize
	nr_plugs_terminate
	nr_plugs_set_mac_led
	nr_plugs_create
	typedef int (*nr_plugs_receive_callback_proc)
	nr_plugs_destroy
	nr_plugs_connect
	nr_plugs_send
	nr_plugs_send_to
	int nr_plugs_listen
	typedef int (*nr_plugs_listen_callback_proc)
	nr_plugs_ip_to_ethernet
	nr_plugs_name_to_ip
	nr_plugs_idle
	void nr_plugs_print_ethernet_packet
	nr_n2h16
	nr_h2n16
	nr_n2h32
	nr_h2n32

	Index

